室温原子系统中的电磁感应光栅效应

董雅宾,周志英,李俊燕,刘瑶瑶

山西大学物理电子工程学院,山西太原 030006

摘要 分别在冷原子和室温原子系统下对电磁感应光栅(EIG)效应进行了理论研究。研究结果表明,冷原子和室 温原子的一级衍射效率分别可以达到 32.5%和 30%,这两个衍射效率都非常接近正弦相位光栅的理想衍射效率。 在实际情况中,冷原子系统比室温原子系统更难制备,系统更为庞大,且对实验要求更高,因此,利用室温原子实现 EIG 更有优势。当信号光和探测光的功率极低时,仍然可以产生 EIG 效应,且其一级衍射效率接近于理论最大值, 该结论可以用来实现弱光对弱光的调控。 关键词 量子光学;电磁感应光栅;四能级原子系统;室温原子系统;一级衍射效率

中图分类号 O431.2 文献标识码 A doi: 10.3788/CJL201744.0912002

Electromagnetically Induced Grating Effect in Room-Temperature Atomic System

Dong Yabin, Zhou Zhiying, Li Junyan, Liu Yaoyao

College of Physics and Electronic Engineering, Shanxi University, Taiyuan, Shanxi 030006, China

Abstract The electromagnetically induced grating (EIG) effect is theoretically studied under the cold atomic and room-temperature atomic systems, respectively. The study results show that the first-order diffraction efficiencies in the cold atomic system and the room-temperature atomic system can reach 32.5% and 30%, respectively. The two diffraction efficiencies are very close to the ideal diffraction efficiency of a sinusoidal grating. However, as far as the actual condition is concerned, the preparation of a cold atom system is more difficult than that of a room-temperature atomic system. Moreover, the cold atomic system is more superior. The theoretical studies also indicate that the EIG effect can also occur with low-power signal and low-power probe beams, and the first-order diffraction efficiency is close to the theoretical maximum, which can be used to realize a weak field modulation with another weak field.

Key words quantum optics; electromagnetically induced grating; four-level atomic system; room-temperature atomic system; first-order diffraction efficiency

OCIS codes 270.1670; 190.2055; 230.1950

1 引 言

基于光栅的色散、分束、偏振和相位匹配这四种特性,光栅被广泛应用于光耦合、光通信、数据存储、信号 处理等方面。常规光栅是指由大量等宽等间距平行狭缝构成的光学器件,通常是在玻璃片上刻出大量平行 刻痕制成,刻痕为不透光部分,两刻痕之间的光滑部分可以透光,相当于一条狭缝。常规光栅制造周期长,不 可实时调制光栅常数和相位。如果对光信号的振幅进行调制,需要改变入射角,这会导致整个光路发生改 变,且通常改变入射角的方法是机械转动,使得调制速率容易受限。

学者们发现了相干布居俘获(CPT)现象^[1],提出了电磁感应透明(EIT)理论,并在实验中观察到了 EIT 现象^[2-3]。基于 EIT 的原子相干效应引起了研究人员的广泛关注,例如 EIT 的非线性理论^[4]、简并能级的 EIT 现象^[5-8]、电磁感应光栅(EIG)^[9-14]、光存储^[15-16]等。Ling 等^[9]基于电磁感应透明原理提出了 EIG 效应,

收稿日期: 2017-02-27; 收到修改稿日期: 2017-04-05

基金项目:国家自然科学基金(11004126,61275212)、山西省基础研究计划(2011021003-1)

作者简介: 董雅宾(1978—), 男, 博士, 副教授, 主要从事量子光学、激光技术方面的研究。E-mail: ybdong@sxu.edu.cn

EIG 可以通过一束光实时控制另一束光。之后,在冷原子实验中观察到了 EIG 现象^[10],该现象已经成功地应用于全光开关^[11-12]中。de Araujo^[13]在 N 型四能级冷原子中实现了电磁感应相位光栅,通过调节参数,可以实现高透过率和相位调制。与常规光栅相比,EIG 可以主动实时调控光信号;常规光栅调节的是光强,而 EIG 能够同时实现振幅和相位的调制,即通过改变系统的参量,在同一系统中实现不同的光强。在改变光强的过程中,EIG 不需要对光路进行重新调整或搭建。

有关 EIG 的研究大多是在冷原子系统中进行,这需要庞大的设备和复杂的系统。若能在室温原子系统 中达到或接近冷原子系统所产生的效果,室温原子系统在实际应用中将更有优势。本文研究了室温原子和 冷原子系统中的三脚架型四能级 EIG 效应。研究表明,室温原子和冷原子的一级衍射效率很接近。由此可 见,相比于冷原子系统,室温原子系统的 EIG 现象在全光逻辑门等领域中有更广阔的应用前景。

2 基本原理

图 1(a)是三脚架型四能级原子系统的能级结构示意图,与原子系统作用的三束光分别为探测光 Ω_p 、耦合光 Ω_c 和信号光 Ω_s 。拉比频率为 $\Omega_p = \mu_{41}E_p/(2\hbar)$ 的弱探测光作用在能级 $|1\rangle$ 和 $|4\rangle$ 上,能级 $|2\rangle$ 和 $|4\rangle$ 由拉比频率为 $\Omega_c = \mu_{42}E_c/(2\hbar)$ 的耦合光连接,拉比频率为 $\Omega_s = \mu_{43}E_s/(2\hbar)$ 的信号光作用在能级 $|3\rangle$ 和 $|4\rangle$ 上,其中 μ_{41} 、 μ_{42} 和 μ_{43} 分别为对应的电偶极距, E_p 、 E_c 和 E_s 分别为探测光、耦合光和信号光的电场强度, \hbar 为约化 普朗克常数。如图 1(b)所示,探测光的传播方向沿着 z轴方向,耦合光的传播方向与 z轴成一个小角度,两束信号光在原子区域叠加形成驻波场。因为信号光由相对 z轴方向呈对称射入的两束光组成,所以在 x方向形成的驻波表示为 $\Omega_s(x) = \Omega_s \sin(\pi x / \Lambda)$,其中 Λ 为驻波的空间周期,x为驻波在 x方向上的坐标。

图 1 (a) 三脚架型四能级原子系统的能级结构;(b) 探测光、耦合光和信号光与原子系统间的位置关系, 零级和一级衍射方向标于图中

Fig. 1 (a) Energy level structure of tripod-type four-level atomic system; (b) position relationship between probe, coupling and signal beams and atomic system, where the 0th and 1st order diffraction directions are indicated

该原子系统的自由哈密顿量可以表示为

$$H_{1} = -\hbar \left[\Omega_{p} \exp(-i\Delta_{p}t + ik_{p}z) \mid 4\rangle\langle 1 \mid + \Omega_{c} \exp(-i\Delta_{c}t + ik_{c}z) \mid 4\rangle\langle 2 \mid + \Omega_{s} \sin(\pi x/\Lambda) \exp(-i\Delta_{s}t + ik_{s}z) \mid 4\rangle\langle 3 \mid + \text{c.c.} \right],$$
(1)

式中 t 为时间, z 为探测光的传播距离, Δ_p 、 Δ_c 、 Δ_s 分别为探测光、耦合光和信号光相对于原子共振跃迁的频率失谐, k_p 、 k_s 、 k_s 分别为探测光、耦合光和信号光的波矢大小, c.c.表示复共轭。

在室温原子系统中,考虑原子多普勒效应的影响。当原子以速度 v_z 运动时, $\Delta_p = \omega_p - \omega_{41} - k_p v_z$, $\Delta_c = \omega_c - \omega_{42} - k_c v_z$ 和 $\Delta_s = \omega_s - \omega_{43} - k_s v_z$ 分别为探测光、耦合光和信号光的失谐,其中 ω_p 、 ω_c 和 ω_s 分别为对应的角频率, ω_{41} 、 ω_{42} 和 ω_{43} 分别为对应的原子跃迁频率。

由麦克斯韦-玻尔兹曼分布[17]可以得到,原子沿 z 轴方向的速度分布函数为

$$f_v(v_z) = \sqrt{\frac{m}{2\pi kT}} \exp\left(\frac{-mv_z^2}{2kT}\right),\tag{2}$$

式中 v_z 为原子沿 z 轴方向的速度, m 为⁸⁷ Rb 原子的质量, k 为玻尔兹曼常量, T 为温度。 最后得到演化方程为

$$\begin{split} \frac{\partial \rho_{11}}{\partial t} &= i\Omega_{p}^{*} \rho_{41} - i\Omega_{p}\rho_{14} + \Gamma_{41}\rho_{44} \\ \frac{\partial \rho_{21}}{\partial t} &= \left[-\gamma_{21} + i(\Delta_{p} - \Delta_{c}) \right] \rho_{21} - i\Omega_{p}\rho_{24} + i\Omega_{c}^{*} \rho_{41} \\ \frac{\partial \rho_{31}}{\partial t} &= \left[-\gamma_{31} + i(\Delta_{p} - \Delta_{s}) \right] \rho_{31} - i\Omega_{p}\rho_{34} + i\Omega_{s}^{*} \sin(\pi x/\Lambda)\rho_{41} \\ \frac{\partial \rho_{41}}{\partial t} &= \left(-\gamma_{14} + i\Delta_{p} \right) \rho_{41} - i\Omega_{p} (\rho_{44} - \rho_{11}) + i\Omega_{s} \sin(\pi x/\Lambda)\rho_{31} + i\Omega_{c}\rho_{21} \\ \frac{\partial \rho_{22}}{\partial t} &= i\Omega_{c}^{*} \rho_{42} - i\Omega_{c}\rho_{24} + \Gamma_{42}\rho_{44} \\ \frac{\partial \rho_{32}}{\partial t} &= \left[-\gamma_{32} + i(\Delta_{c} - \Delta_{s}) \right] \rho_{32} - i\Omega_{c}\rho_{34} + i\Omega_{s}^{*} \sin(\pi x/\Lambda)\rho_{42} \\ \frac{\partial \rho_{42}}{\partial t} &= \left(-\gamma_{24} + i\Delta_{c} \right) \rho_{42} - i\Omega_{c} (\rho_{44} - \rho_{22}) + i\Omega_{s} \sin(\pi x/\Lambda)\rho_{32} + i\Omega_{p}\rho_{12} \\ \frac{\partial \rho_{33}}{\partial t} &= i\Omega_{s}^{*} \sin(\pi x/\Lambda)\rho_{43} - i\Omega_{s} \sin(\pi x/\Lambda)\rho_{34} + \Gamma_{43}\rho_{44} \\ \frac{\partial \rho_{43}}{\partial t} &= \left(-\gamma_{43} + i\Delta_{s} \right) \rho_{43} - i\Omega_{s} \sin(\pi x/\Lambda)(\rho_{44} - \rho_{33}) + i\Omega_{p}\rho_{13} + i\Omega_{c}\rho_{23} \\ \frac{\partial \rho_{41}}{\partial t} &= i\Omega_{s} \sin(\pi x/\Lambda)\rho_{34} - i\Omega_{s}^{*} \sin(\pi x/\Lambda)\rho_{43} + i\Omega_{p}\rho_{14} - i\Omega_{p}^{*}\rho_{41} + i\Omega_{c}\rho_{24} - i\Omega_{c}^{*}\rho_{42} - (\Gamma_{41} + \Gamma_{42} + \Gamma_{43})\rho_{44} \end{split}$$

式中 Γ_{ij} 代表能级i和j(i, j = 1, 2, 3, 4)之间的粒子数衰减, γ_{ij} 表示对应能级间的相位衰减,且密度矩阵元 $\rho_{ji} = \rho_{ij}^*$ (运算符号 * 表示复共轭), $\rho_{11} + \rho_{22} + \rho_{33} + \rho_{44} = 1$ 。

考虑到(3)式中 ρ_{ij} 受到 v_z 的影响,有

$$\rho_{ij} = \int_{-\infty}^{+\infty} \rho_{ij} f_v(v_z) dv_z = \sqrt{\frac{m}{2\pi kT}} \int_{-\infty}^{+\infty} \rho_{ij} \exp\left(\frac{-mv_z^2}{2kT}\right) dv_z \,. \tag{4}$$

探测光的传播方程可以写为

()

$$\frac{-\mathrm{i}}{N_{\mathrm{F}}} \frac{\partial^2 \Omega_{\mathrm{p}}}{\partial x^2} + \frac{\partial \Omega_{\mathrm{p}}}{\partial z} = (\alpha_{\mathrm{r}} + \mathrm{i}\alpha_{\mathrm{i}}) \Omega_{\mathrm{p}}, \qquad (5)$$

式中 N_F为菲涅耳数。利用(5)式,得到原子介质在 z=L 处的传输函数为

$$T(x) = \exp[\alpha_{\rm r}(x)L] \exp[i\alpha_{\rm i}(x)L], \qquad (6)$$

式中 $\alpha_r = -\operatorname{Im}[\rho_{41}]\gamma_{41}/\Omega_p, \alpha_i = \operatorname{Re}[\rho_{41}]\gamma_{41}/\Omega_p, L$ 为探测光与原子介质相互作用的长度。夫琅禾费衍射方 程为

$$I_{\rm P}(\theta) = |E_{\rm P}^{1}(\theta)|^{2} \frac{\sin^{2}(M\pi\Lambda\sin\theta/\lambda_{\rm P})}{M^{2}\sin^{2}(\pi\Lambda\sin\theta/\lambda_{\rm P})}, \qquad (7)$$

式中 $E_P^1(\theta) = \int_0^1 T(x) \exp(-i2\pi\Lambda x \sin\theta/\lambda_p) dx$ 是对于一个衍射单元的夫琅禾费衍射, *M* 为被探测光照射 到的衍射单元数, θ 为探测光相对于 z 方向的衍射角, λ_p 为探测光波长。选择 Λ 作为 x 的单位。

3 数值模拟结果与讨论

数值模拟结果表明,一级衍射效率主要依赖于耦合光和信号光的拉比频率(Ω_e 和 Ω_s)、探测光和信号光的失谐(Δ_P 和 Δ_s)、温度 T和相互作用长度L。经验证, Δ_e 影响不大,不进行重点研究。图 2所示为探测光的传输函数 T(x)随 x 的变化,其中 y 为自然线宽, $\varphi = \alpha_i(x)L$ 。可以看出,当振幅调制对传输函数的调制作用很小时,冷原子条件下探测光透射率在 97%左右振荡;室温环境下探测光透射率在 99%左右振荡,相位调制对传输函数影响较大。图 2(a)中冷原子条件下最大相位可以达到 1.15 π ,图 2(b)中相位调制对传输函

图 2 探测光传输函数 T(x)的振幅和相位随 x 的变化($\Delta_p = 2.4\gamma, \Delta_c = 0, \Delta_s = 0.24\gamma, \Omega_p = 0.1\gamma, L = 920,$ $M = 5, \Lambda/\lambda_p = 4, \gamma_{41} = \gamma_{42} = \gamma_{43} = \gamma, \gamma_{32} = \gamma_{31} = \gamma_{21} = 0.04\gamma,$ $\Gamma_{41} = \Gamma_{42} = \Gamma_{43} = 0.66\gamma)$ 。(a) T = 0 K, $\Omega_c = 13.6\gamma, \Omega_s = 0.19\gamma$; (b) T = 300 K, $\Omega_c = 17.7\gamma, \Omega_s = 0.28\gamma$

Fig. 2 Amplitude and phase of transmission function T(x) versus x ($\Delta_p = 2.4\gamma, \Delta_c = 0, \Delta_s = 0.24\gamma, \Omega_p = 0.1\gamma, L = 920,$

 $M = 5, \ \Lambda/\lambda_{p} = 4, \ \gamma_{41} = \gamma_{42} = \gamma_{43} = \gamma, \ \gamma_{32} = \gamma_{31} = \gamma_{21} = 0.04\gamma, \ \Gamma_{41} = \Gamma_{42} = \Gamma_{43} = 0.66\gamma).$ (a) $T = 0 \text{ K}, \ \Omega_{c} = 13.6\gamma, \ \Omega_{s} = 0.19\gamma;$ (b) $T = 300 \text{ K}, \ \Omega_{c} = 17.7\gamma, \ \Omega_{s} = 0.28\gamma$

数的作用比振幅调制的大,最大相位可以达到 0.56π,这使得探测光的一级衍射效率有了很大提高。

图 3 所示为以 sin θ 为自变量的衍射强度。当只有振幅调制时(虚线),入射光能量的 96%都集中在零级衍射方向,高级衍射方向几乎没有能量。加入相位调制(实线)后,更多的能量转移到一级和二级衍射方向。通过调节参数,当 T=0 K 时[图 3(a)],相位调制后探测光的一级衍射效率可以超过 32.5%,此时零级和二级衍射方向上的衍射效率分别为 10%和 9%。当 T=300 K 时[图 3(b)],相位调制后探测光的零级、一级和二级衍射方向上的衍射效率分别为 17%、30%、8%。冷原子和室温原子在加入相位调制后,一级衍射效率都有增大,而且比较接近。

图 3 有无相位调制下衍射强度随 sin θ 的变化。(a) T=0 K, $\Omega_c=13.6\gamma$, $\Omega_s=0.19\gamma$; (b) T=300 K, $\Omega_c=17.7\gamma$, $\Omega_s=0.28\gamma$

Fig. 3 Diffraction intensity versus sin θ with and without phase modulation. (a) T=0 K, $\Omega_c=13.6\gamma$, $\Omega_s=0.19\gamma$; (b) T=300 K, $\Omega_c=17.7\gamma$, $\Omega_s=0.28\gamma$

图 4 和图 5 所示分别为 T=0 K 和 T=300 K 下以 Ω_c 和 Ω_s 为自变量的一级衍射效率。当 T=0 K 和 T=300 K 时,选择合适的参数,探测光的一级衍射效率都随 L 的增大而一直增大。对于冷原子系统,选择 合适的参数,当 L 由 100 增大到 920 时,探测光的一级衍射效率由 25.25%增大到 32.5%;对于室温原子系统,探测光的一级衍射效率增大幅度较大[图 5(a)中,L=100 时一级衍射效率仅为 2%,随着 L 的增大, 图 5(b)~(d)中一级衍射效率增大到 30%]。故无论是在冷原子系统中还是在室温原子系统中,参数 L 的 变化对探测光的一级衍射效率的影响都不可忽略,需要选择合适的 L。

图 4 中对应的一级衍射强度最大值处所取的 Ω_s 由 0.61 γ 降低到 0.19 γ ,变化不大。图 5 中对应的一级 衍射强度最大值处所取的 Ω_s 由 0.07 γ 升高到 0.28 γ ,呈增大趋势。 Ω_p 一直为 0.1 γ ,故在冷原子系统和室温 原子系统中, Ω_p 和 Ω_s 均较弱,且具有较好的线性。也就是说,弱的信号光可以用来线性调制弱的探测光。

图 6 所示分别为 T=0 K 和 T=300 K 时,以 Δ_p 和 Δ_s 为自变量的一级衍射强度 $I_P(\theta_1)$ 。如图 6(a)所

图 4 不同 L 下以 Ω_c 和 Ω_s 为自变量的一级衍射强度 $I_P(\theta_1)(T=0 \text{ K}, \Delta_c=0, \Delta_p=2.4\gamma, \Delta_s=0.24\gamma)$ 。 (a) L=100; (b) L=300; (c) L=600; (d) L=920

Fig. 4 First-order diffraction intensity $I_{\rm P}(\theta_1)$ as a function of $\Omega_{\rm c}$ and $\Omega_{\rm s}$ with different L(T=0 K, $\Delta_{\rm c}=0$, $\Delta_{\rm p}=2.4\gamma$, $\Delta_{\rm s}=0.24\gamma$). (a) L=100; (b) L=300; (c) L=600; (d) L=920

图 5 不同 L 下以 Ω_c 和 Ω_s 为自变量的一级衍射强度 $I_P(\theta_1)(T=300 \text{ K}, \Delta_c=0, \Delta_p=2.4\gamma, \Delta_s=0.24\gamma)$ 。 (a) L=100; (b) L=300; (c) L=600; (d) L=920

Fig. 5 First-order diffraction intensity $I_{P}(\theta_{1})$ as a function of Ω_{c} and Ω_{s} with different L

 $(T=300 \text{ K}, \Delta_c=0, \Delta_p=2.4\gamma, \Delta_s=0.24\gamma).$ (a) L=100; (b) L=300; (c) L=600; (d) L=920

示,当 T=0 K, $\Delta_s=0.24\gamma$, $\Delta_p=2.4\gamma$ 时,探测光的一级衍射效率高达 32.5%。随着温度的升高,参数调整 后,当 T=300 K, $\Delta_s=0.55\gamma$, $\Delta_p=1.8\gamma$ 时,探测光的一级衍射效率高达 30%,如图 6(b)所示。随着温度的 升高,一级衍射效率逐渐降低。调整的最优结果表明,合适的 Δ_p 和 Δ_s 是得到高衍射效率的必要条件。

4 结 论

通过数值模拟方法,分别对冷原子和室温原子系统进行了研究。结果表明,无论是冷原子还是室温原子

中 国 激 光

图 6 不同温度下以 Δ_p 和 Δ_s 为自变量的一级衍射强度 $I_P(\theta_1)(L=920, \Omega_c=12.03\gamma, \Omega_s=0.19\gamma)$ 。 (a) T=0 K;(b) T=300 K

Fig. 6 First-order diffraction intensity $I_{\rm P}(\theta_1)$ as a function of $\Delta_{\rm p}$ and $\Delta_{\rm s}$ with different temperatures $(L=920, \ \Omega_{\rm c}=12.03\gamma, \ \Omega_{\rm s}=0.19\gamma)$. (a) T=0 K; (b) T=300 K

系统,当只有振幅调制时,入射光能量几乎全都集中在零级衍射方向,当引入相位调制后,更多的能量转移到 了高阶衍射方向。比较了影响探测光一级衍射效率的因素(Ω。和Ω,Δ,和Δ,L和T)。调整参数后,一级 衍射效率在室温原子系统和冷原子系统中分别可以达到 30%和 32.5%。由于在实际应用中,冷原子系统的 制备相对于室温原子系统的制备困难得多,而室温原子系统中一级衍射效率仅比冷原子系统的低 2.5%,因 此室温原子系统的 EIG 效应在实际应用中更有优势。在数值模拟过程中还可以看出,在不降低探测光一级 衍射效率的情况下,信号光和探测光都可以被控制得很弱,这可以用来实现弱光控制弱光的光控开关和光调 制器,有助于光电子器件和全光逻辑门的发展。

参考文献

- [1] Gray H R, Whitley R M, Stroud C R. Coherent trapping of atomic populations[J]. Optics Letters, 1978, 3(6): 218-220.
- Harris S E. Lasers without inversion: interference of lifetime-broadened resonances[J]. Physical Review Letters, 1989, 62(9): 1033-1036.
- [3] Boller K J, Imamoğlu A, Harris S E. Observation of electromagnetically induced transparency[J]. Physical Review Letters, 1991, 66(20): 2593-2596.
- [4] Gong Shangqing, Xu Zhizhan. Nonlinear theory of electromagnetically induced transparency[J]. Chinese J Lasers, 1996, 23(4): 311-314.

龚尚庆,徐至展. 电磁感应透明的非线性理论[J]. 中国激光, 1996, 23(4): 311-314.

- [5] Dong Y B, Zhang J X, Wang H H, *et al*. Quantum interference effects in a multi-driven transition $F_g = 3 \leftrightarrow F_e = 2[J]$. Chinese Physics, 2006, 15(6): 1262-1267.
- [6] Dong Y B, Wang H H, Gao J R, et al. Quantum coherence effects in quasidegenerate two-level atomic systems[J]. Physical Review A, 2006, 74(6): 063810.
- [7] Dong Y B, Zhang J X, Wang H H, et al. Observation of the widening and shifting of EIT windows in a quasidegenerate two-level atomic system [J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2006, 39(17): 3447-3455.
- [8] Dong Y B, Zhang J X, Wang H H, et al. Quantum interference effects in a multi-driven transition F_g = 3↔F_e=2[J]. Optics Communications, 2006, 259(2): 765-771.
- [9] Ling H Y, Li Y Q, Xiao M. Electromagnetically induced grating: homogeneously broadened medium[J]. Physical Review A, 1998, 57(2): 1338-1344.
- [10] Cardoso G C, Tabosa J W R. Electromagnetically induced gratings in a degenerate open two-level system[J]. Physical Review A, 2002, 65(3): 033803.
- [11] Brown A W, Xiao M. All-optical switching and routing based on an electromagnetically induced absorption grating[J]. Optics Letters, 2005, 30(7): 699-701.
- [12] Antón M A, Calderón O G, Melle S, et al. All-optical switching and storage in a four-level tripod-type atomic system
 [J]. Optics Communications, 2006, 268(1): 146-154.

- [13] de Araujo L E. Electromagnetically induced phase grating[J]. Optics Letters, 2010, 35(7): 977-979.
- [14] Dong Y B, Guo Y H. Electromagnetically induced grating in a four-level tripod-type atomic system [J]. Chinese Physics B, 2014, 23(7): 074204.
- [15] Bajcsy M, Zibrov A S, Lukin M D. Stationary pulses of light in an atomic medium[J]. Nature, 2003, 426(6967): 638-641.
- [16] Heinze G, Hubrich C, Halfmann T. Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute[J]. Physical Review Letters, 2013, 111(3): 033601.
- [17] Wang Zhicheng. The thermodynamics and statistical physics [M]. Beijing: Higher Education Press, 2013: 197-198.
 汪志诚. 热力学,统计物理 [M]. 北京:高等教育出版社, 2013: 197-198.